
National Research University

Higher School of Economics

Faculty of Mathematics

as a manuscript

Danil Vassiliev

Geometry of moduli spaces

of stable sheaves on

rational Fano varieties

Summary of the PhD Thesis

for the purpose of obtaining academic degree

Doctor of Philosophy in Mathematics

Academic supervisor:

Doctor of sciences,
Professor Alexander Tikhomirov

Moscow � 2024



Thesis was completed in the Laboratory of Algebraic Geometry and Its

Applications of National Research University Higher School of Economics.

The results of the thesis are published in three articles:

1. A. Tikhomirov, S. Tikhomirov, D. Vasiliev. Construction of stable rank

2 vector bundles on P3 via symplectic bundles. Siberian Mathematical

Journal, vol. 60:2 (2019), P. 343-358.

2. D. A. Vassiliev. An In�nite Series of Rational Components of the Moduli

Space of Rank 3 Sheaves on P3. Siberian Mathematical Journal. 2023. Vol.

64. No. 3. P. 525-541.

3. D. A. Vasil'ev, A. S. Tikhomirov. Moduli of rank two semistable sheaves

on rational Fano threefolds of the main series. Mat. Sb., 215:10 (2024),

3�57.

2



General description of the �eld of study

The vector bundles of rank two on the projective space P3 have been one

of central objects of interest in algebraic geometry since 1970's, when it was

discovered that certain algebraic rank 2 bundles on P3 are related to physical

¾instantons¿, which are de�ned to be anti-self-dual connections on the sphere

S4 with structure group SU(2) [5]. These bundles were called mathematical

instantons. The study of moduli spaces of rank 2 bundles on P3 received more

attention from 2010's, when it was shown that moduli spaces of mathematical

instantons with �xed Chern classes are irreducible [34, 35]. However, the moduli

spaces of general semistable coherent sheaves with �xed Chern classes may

have several irreducible components, and their geometry is far from being well-

understood. The study of sheaves of rank higher than 2 on P3 and the study of

rank 2 sheaves on other Fano threefolds is only starting to be developed in last

years (e.g., see recent articles [3, 12, 33]).

Main results of the thesis

In our thesis we construct several in�nite series of irreducible moduli components

of rank 2 coherent sheaves on rational Fano threefolds � the projective space

X1 = P3, the smooth quadric X2, intersection of two quadrics X4 and the

codimension 3 linear section X5 of the Grassmannian Gr(2, 5) embedded by

Pl�ucker. They include series Σ0 and Σ1 from [36], series Mk,m,n from Theorems

4.2 and 4.3 of [40], series M̃m from Theorem 4.4 loc. cit., series Mm from

Theorem 4.5 loc. cit. and series Mk,m,n from Theorem 4.6 loc. cit. Also we

construct the series of irreducible components S3(b, c) of moduli spaces of rank

3 coherent sheaves on P3 (see Assertion 2 of [39]). We prove that the components

S3(b, c) are rational if 3 | (2b + c) (see Theorem 2 of [39]). Also we prove that

the components S(0, b, c) from [21] are rational (Theorem 3 of [39]), as well as

the components from Theorems 4.2, 4.3, 4.4 and 4.5 of [40] and the components

from Theorem 4.6 loc. cit. for varieties X1, X2 and X5.

For the quadric X2 we give exact bounds on the third Chern class c3 of

a semistable rank 2 sheaf with �xed c1 and c2 and classify semistable sheaves

with maximal c3 (see Theorem 3.1 of [40]). In this we follow the work of Schmidt

[31] who studied analogously the sheaves on the projective space. A notable new
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result is the discovery of the �rst known example of a disconnected moduli space

of rank 2 semistable sheaves with �xed Chern classes on a smooth projective

threefold, see Theorem 5.4 of [40]. Also we give bounds on the third Chern class

of so-called sheaves of main type on X4 and X5. (see Thorems 6.1 and 6.2 loc.

cit.)

Place of the results in the general context of the

�eld of study

Our description of irreducible components of moduli spaces of rank 2 bundles on

P3 is a continuation of earlier results of other matematicians, in particular, of the

results from [34, 35, 29, 14, 2]. We describe this in more detail in Section 2. The

construction of irreducible components S3(b, c) is a development of the idea of

construction of components S(a, b, c) from [21], and we describe this in Section

4. Our description of semistable sheaves on the quadric X2 with maximal third

Chern class is a direct generalization of results, obtained by Schmidt for P3 in

[31], see also Sections 5 and 6.

Methods of obtaining the results of the thesis

Irreducible components of moduli spaces of rank 2 bundles on P3 are obtained by

the method of monads, introduced in [7]. The monads used are a generalization

of monads from [2] and also use the notion of symplectic instanton bundles.

Also the construction uses the methods from deformation theory. The proof of

rationality of irreducible components S3(b, c) is based on the results of Bialynicki-

Birula [6] and uses the notion of equivariant resolution of singularities [23].

The description of semistable sheaves on X2 with maximal third Chern class is

obtained by means of the theory of Bridgeland stability conditions on threefolds

and tilt stability, developed in [8, 32].

Possible applications of our results

Our study has a theoretical character. The results of it can be used for a further

study of stable and semistable sheaves on Fano varieties, and, in particular, for
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obtaining exact bounds on the third Chern class of semistable rank two sheaves

on X4 and X5.

Structure of the summary

The summary of the thesis is organised as follows. In Section 1 we recall the

de�nition of moduli spaces of semistable sheaves and give some other preliminary

notions and conventions. In Section 2 we describe our joint results with A. S.

Tikhomirov and S. A. Tikhomirov [36] on the construction of two new in�nite

series of moduli components of rank 2 bundles on P3. Section 3 is based on

results of Bialynicki-Birula which will be used in the next section. In Section 4

we describe our construction of an in�nite series of rational moduli components

of stable rank 3 bundles on P3 from [39]. In Section 5 we recall some concepts

related to stability conditions of objects in derived categories and give some

background material for the next section. In Section 6 we describe our joint

results with A. S. Tikhomirov [40] on description of moduli spaces of rank 2

semistable sheaves on Fano varieties Xi and give bounds on the third Chern

class of such sheaves.

1 Moduli spaces of semistable sheaves

The moduli spaces of coherent sheaves were �rst constructed by Mumford [27]

in the case of vector bundles over curves using the notion of slope stability. This

notion can also be given for sheaves over higher-dimensional varieties. Let X be

a smooth n-dimensional projective variety over an algebraically closed �eld k of

characteristic 0 with a very ample line bundle OX(1) corresponding to a divisor

H.

De�nition 1. The slope of a coherent sheaf E on X is de�ned as µ(E) =
Hn−1·c1(E)
Hn·rk(E) , where c1(E) denotes the �rst Chern class of E and rk(E) is the

rank of E. Here dividing by zero is interpreted as +∞.

De�nition 2. A sheaf E is said to be µ-stable (respectively, µ-semistable) if for

all proper subsheaves 0 6= F ⊂ E the inequality µ(F ) < µ(E/F ) (respectively,

µ(F ) ≤ µ(E/F )) holds.
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The moduli spaces of sheaves on higher-dimensional varieties were constructed

by Gieseker [16] and Maruyama [25, 26] using another notion of stability. With

the same notation as above denote by E(m) the coherent sheaf E ⊗OX
OX(m).

De�nition 3. The Hilbert polynomial of E is de�ned as P (E,m) = χ(E(m)),

where χ(E(m)) is the Euler characteristic of the sheaf E(m).

Let f, g ∈ R[m] be nonzero polynomials. If deg(f) > deg(g), we set f < g.

If deg(f) = deg(g) and a, b are the leading coe�cients in f, g, respectively, then

we set f < (≤)g if f(m)
a < (≤) g(m)

b for all m� 0.

De�nition 4. A coherent sheaf E is called Gieseker (semi)stable, or simply

(semi)stable, if for any proper subsheaf 0 6= F ⊂ E we have P (F,m) < (≤
)P (E/F,m).

We will use later another notion of stability of sheaves, intermediate between

µ-stability and Gieseker stability. Let now dimX = 3. For a coherent sheaf E

on X we de�ne the numbers ai(E) for i ∈ {0, 1, 2, 3} by P (E,m) = a3(E)m3 +

a2(E)m2+a1(E)m+a0(E). Then we set P2(E,m) = a3(E)m2+a2(E)m+a1(E).

De�nition 5. The sheaf E is called Gieseker 2-(semi)stable if for any proper

subsheaf 0 6= F ⊂ E we have P2(F,m) < (≤)P2(E/F,m).

Stability, 2-stability and µ-stability of a sheaf are related by the following

implications:

µ-stability +3 2-stability +3 stability

��
µ-semistability 2-semistabilityks semistabilityks

For the de�nition of moduli spaces we will need the following notions.

De�nition 6. Let E be a semistable sheaf. A Jordan-H�older �ltration of E is

a �ltration

0 = E0 ⊂ E1 ⊂ . . . ⊂ En = E,

such that the factors gri(E) = E1/Ei−1 are stable and for all i P (gri(E),m) =

ciP (E,m), ci ∈ R.

Proposition 1 ([20, Proposition 1.5.2]). Jordan-H�older �ltrations always exist.

The associated graded object gr(E) = ⊕igri(E) does not depend on the choice

of the Jordan-H�older �ltration.
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De�nition 7. Two semistable sheaves E1 and E2 with the same Hilbert polynomial

are called S-equivalent if gr(E1) ∼= gr(E2).

Let us recall the following category-theoretic notions. For a category C we

denote by Co the opposite category and by C′ the functor category whose objects
are functors Co → Sets and whose morphisms are natural transformations.

There is a Yoneda functor which associates to an object X ∈ C a functor X :

Y → MorC(Y,X). The Yoneda functor embeds C as a full subcategory in C′.

De�nition 8. A functor F ∈ Ob C′ is corepresented by F ∈ Ob C if there is a

C′-morphism α : F → F such that any morphism α′ : F → F ′ factors through

a unique morphism β : F → F ′. And F is represented by F if α : F → F is an

isomorphism.

If an object F represents F , then it also corepresents F , and if F corepresents

F , then it is unique up to a unique isomorphism. We can rephrase the above

de�nitions by saying that F represents F if MorC(X,F ) = MorC′(X,F) for all

X ∈ Ob C and F corepresents F if MorC(F,X) = MorC′(F , X) for all X ∈ Ob C.
Let us now turn to the de�nition of our moduli functors. For a �xed polynomial

P ∈ Q[z] de�ne a functor M′ : Sch/k → Sets in the following way. For a k-
scheme S we de�ne M′(S) as the set of isomorphism classes of S-�at families of

semistable sheaves on X with Hilbert polynomial P . The action of functor M′

a morphism f : S′ → S is de�ned by pullback of families along the morphism

f × idX .

If E ∈M′(S) is an S-�at family of semistable sheaves, and L is line bundle

on S, then E ⊗ p∗L (here p : X × S → S is the canonical projection) is also

an S-�at family, and these two families have isomorphic �bers over any point

s ∈ S. It is therefore reasonable to consider the quotient functor M = M′/ ∼,
where ∼ is the following equivalence relation:

E ∼ E′ for E,E′ ∈M′(S) i� E ∼= E′ ⊗ p∗L for some L ∈ Pic S.

A schemeM is called a moduli space of semistable sheaves if it corepresents

the functor M.

Theorem 1 ([20, Theorem 4.3.4]). There is a projective scheme MOX(1)(P )

that corepresents the functor M. Closed points in MOX(1)(P ) are in bijection

with S-equivalence classes of semistable sheaves with Hilbert polynomial P .
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If the sheaves with Hilbert polynomial P on a threefold X with ample

generator OX(1) of its Picard group have rank r and Chern classes c1, c2, c3, we

will denoteMOX(1)(P ) byMX(r; c1, c2, c3). If r = 2, then r will be sometimes

dropped from the notation. Also we will denote by BX(c1, c2) the open subset

ofMX(2; c1, c2, 0) corresponding to stable locally free sheaves. And if X = P3,

then the subscript X will be sometimes dropped.

In this thesis by a general point of irreducible scheme we mean a closed point

belonging to some Zariski open dense subset of this scheme. Sometimes we will

not make a distinction between a stable sheaf E and its isomorphism class [E]

as a point of moduli scheme.

For a coherent sheaf F on X and a non-negative integer n we will sometimes

denote the sheaf F⊕n by nF . We denote the sheaf cohomology groups Hi(X,F )

by Hi(F ).

2 Construction of rank 2 bundles on P3 via symplectic

rank 4 bundles

In the description of the moduli spaces B(e, n) we can assume after twisting by

line bundle that e ∈ {0,−1}. For e = 0 these moduli spaces are non-empty if

n ≥ 1, and for e = −1 if n ≥ 2 is even [17].

It is now known [34, 35] that the scheme B(0, n) has an irredicible component

In of expected (by deformation theory) dimension 8n−3, and this component is

the closure of a smooth open subset of In, consisting of the so-called mathematical

instanton vector bundles. For the case e = −1 in [17, Exercise 4.3.2] Hartshorne

constructed the �rst in�nite series {B0(−1, 2m)}m≥1 of irreducible components

B0(−1, 2m) ⊂ B(−1, 2m), which have the expected dimension 16m− 5.

Another in�nite series of families of stable rank 2 bundles on P3, depending

on triples of integers a, b, c, was described by Rao in 1984 [29] and in 1988 Ein

independently described these families and proved that they constitute open

subsets of irreducible components of B(e, n) [14].

De�nition 9. A monad [7] is a complex

0→ A a→ B c→ C → 0

of vector bundles, where a is an injective bundle map and c is surjective. In this

situation the cohomology sheaf E = ker c
im a is locally free.
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Recall that a symplectic structure on a vector bundle E is an anti-self-dual

isomorphism θ : E
∼→ E∨, θ∨ = −θ, considered modulo proportionality.

De�nition 10. A symplectic vector bundle E on P3 is called a symplectic

instanton [2], if

h0(E(−1)) = h1(E(−2)) = h2(E(−2)) = h3(E(−3)) = 0,

c2(E) = n ≥ 1.

The number c2(E) is called the charge of an instanton E. The Beilinson

spectral sequence implies that symplectic instantons of rank 2r and charge n

are precisely the cohomology bundles of anti-self-dual monads of the form

0→ nOP3(−1)→ (2n+ 2r)OP3 → nOP3(1)→ 0. (1)

In 2017 Ch. Almeida, M. Jardim, A. S. Tikhomirov and S. A. Tikhomirov

[2] have constructed a new in�nite series of irreducible components Ya of spaces

B(0, 1 + a2) for a ∈ {2} ∪ Z≥4. These components have dimensions dimYa =

4
(
a+3
3

)
−a−1, which for a ≥ 4 are greater than expected. General sheaves from

this components can be described as cohomology sheaves of monads, in which

the middle term is a symplectic instanton of rank 4 and c2 = 1 and the left and

right terms are the sheaves OP3(−a) and OP3(a) respectively.

In a joint paper [36] with A. S. Tikhomirov and S. A. Tikhomirov we

have constructed two new in�nite series of irreducible components M(e, n) of

spaces B(e, n), one for e = 0 and one for e = −1, which generalize the above

construction from [2]. Namely, for e = 0 we constructed an in�nite series Σ0

of irreducible components M(0, n) ⊂ B(0, n) such that a general bundle from

M(0, n) can be described as a cohomology bundle of a monad of the form

0→ OP3(−a)→ E→ OP3(a)→ 0, (2)

in which E is now a symplectic instanton of rank 4 with an arbitrary second

Chern class and a is big enough.

In order to prove that the cohomology bundles of monads (2) form a dense

open subset of an irreducible component of B(0, n), we consider a direct sum E =

E1⊕E2 of two mathematical instanton bundles with charges c2(E1) = m ≥ 1 and

c2(E2) = m+ ε, where ε ∈ {0, 1}. We show the vanishing of certain cohomology

groups associated to general such bundles. The bundle E is a symplectic rank 4
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instanton. This bundle and its deformations are used as middle terms of monads

(2). We construct a universal family Y of cohomology bundles E of such monads

and prove that the Kodaira�Spencer map from the tangent space of Y at a given

point x0 to Ext1(E,E) is an isomorphism. Since Y is smooth at x0, this implies

that the image of Y in B(0, n) is indeed an open subset. We have n = 2m+ε+a2.

The Hirzeruch�Riemann�Roch formula allows us to �nd the dimension of

the space of symplectic instantons E, which is equal to H1(S2E) by deformation

theory, and the dimension of H0(E(a)) = χ(E(a)). We get that the dimension

ofM(0, n) is equal to 4
(
a+3
3

)
+ (2m+ ε)(10− a)− 11.

In [36, Theorem 1] we have proved that the series Σ0 contains components

M(0, n) for all n� 0 (more precisely, at least for all n ≥ 146). The series Σ0 is

the �rst known series after the instanton series {In}n≥1 with such a property (for
the Ein series the question whether it contains components for all big enough

values of the second Chern class is open).

For the case e = −1 we analogously constructed a series Σ1 of irreducible

componentsM(−1, n) of spaces B(−1, n), where n is even, such that a general

bundle from M(−1, n) is the cohomology bundle of a monad anologous to

monads above, in which the middle term is a so-called twisted symplectic instanton

bundle of rank 4 with the �rst Chern class equal to −2 and an arbitary even

second Chern class, while the left and the right terms are now OP3(−a − 1)

and OP3(a), respectively, with a big enough. As a test twisted symplectic rank

4 bundle we consider a direct sum E1 ⊕ E2, where E1 ∈ B0(−1, 2m), E2 ∈
B0(−1, 2(m + ε)), ε ∈ {0, 1}. We have n = 4m + 2ε + a(a + 1). The dimension

of this component is equal to 4
(
a+3
3

)
+ 2
(
a+3
2

)
− (2m+ ε)(2a− 19)− 17.

In [36, Theorem 2] we proved that Σ1 contains components M(−1, n) for

asymptotically all big enough even n. More precisely, if N is the set of all n for

which there exist a componentM(−1, n) ∈ Σ1, then

lim
r→∞

|N ∩ {2, 4, . . . , 2r}|
r

= 1.

Also in [36, �4] we have found all values n ≤ 20 for which there exist a

component M(0, n). We calculated their dimensions and spectra of general

bundles from these components. And we made the same for all components

M(−1, n) with n ≤ 40.

10



3 Results of Bialynicki-Birula

In [39] we proved rationality of irreducible components of moduli spaces of stable

sheaves on P3 from two in�nite series (of rank 2 and rank 3 sheaves, respectively).

The main ingredient of the proof is constituted by results of Bialynicki-Birula

[6], which we recall in this section.

Take an algebraic group scheme G over k and an algebraic scheme Y over k.
Then G × Y has a natural group scheme structure over Y . Consider a �nite-

dimensional vector space V over k and a group homomorphism α : G→ GL(V ).

Following [6], refer as a trivial α-bundle over Y to the Y -scheme V ×Y with

the action of G× Y induced by α. A Y -scheme X is an α-bundle if there exists

an open covering Y =
⋃
i Yi such that the �bered product X×Y Yi is isomorphic

as a Yi-scheme to the trivial α-bundle over Yi for each i. A Y -scheme X with

an action of G × Y is a G-bundle whenever there exists an open covering Y =⋃
i Yi such that X×Y Yi for each i is an αi-bundle over Yi with αi : G→ GL(Vi).

If dimVi = n for each i then we say that the G-bundle is of dimension n.

From now on we put G = Gm. If V is a vector space over k carrying a linear

representation of G then denote by V 0 the subrepresentation consisting of all

v ∈ V with G(k) · v = v. Denote the subrepresentations that are the linear

spans of v ∈ V such that for λ ∈ G(k) ∼= k× the result of the action of λ on v

equals λmv for m > 0 and m < 0 by V + and V −. We have V = V 0⊕V +⊕V −.
Note that for the action of G on an algebraic k-scheme X and for a closed

a ∈ XG in the �xed-point set the tangent space Ta(X) carries a canonical

representation of G.

In the next proposition all algebraic schemes are reduced, whileX is a nonsingular

projective algebraic scheme with an action of G.

Proposition 2 ([6, Theorem 4.1]). If XG =
⋃r
i=1(XG)i is the decomposition of

XG into connected components then for each i = 1, . . . , r there exists a unique

locally closed nonsingular G-invariant subscheme X+
i , respectively X

−
i , of the

scheme X, as well as a unique morphism γ+i : X+
i → (XG)i, respectively γ

−
i :

X−i → (XG)i, such that the following hold:

(a) (XG)i is a closed subscheme of X+
i , respectively X

−
i , and the morphism

γ+i |(XG)i , respectively γ
−
i |(XG)i , is the identity;

(b) X+
i , respectively X

−
i , with the induced action of G and the morphism

γ+i , respectively γ
−
i , is a G-bundle over (XG)i;
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(c) for every closed a ∈ (XG)i we have

Ta(X+
i ) = Ta(X)0 ⊕ Ta(X)+, Ta(X−i ) = Ta(X)0 ⊕ Ta(X)−.

The dimension of the G-bundle de�ned in (b) equals Ta(X)+, respectively

Ta(X)−, for every closed a ∈ (XG)i.

Moreover, X =
⋃r
i=1X

+
i =

⋃r
i=1X

−
i according to [6, Theorem 4.3].

Given a prescribed action η : Gm × X → X of Gm on a proper algebraic

variety X and p ∈ X, the mapping η(−, p) : A1\{0} ∼= Gm → X extends

uniquely to the regular mapping η(−, p) : A1 → X, and we will denote η(−, p)(0)

by η0(p).

Our proof of rationality of moduli components is based on the following

simple corollary of Proposition 2.

Lemma 1 ([39, Lemma 1]). Consider a nonsingular projective variety X with

an action η of the group G = Gm. Suppose that for a dense open subset U ⊂ X
there exists a rational subvariety Y ⊂ XG such that η0(u) ∈ Y for every u ∈ U .
Then X is rational.

Indeed, in the situation of the lemma U is isomorphic to a dense open subset

of a G-bundle over Y , hence U is birational to a product of Y with an a�ne

space.

4 An in�nite series of rational moduli components

of rank 3 sheaves on P3

Recall that a sheaf F is called re�exive if the natural map F → F∨∨ is an

isomorphism. Re�exive sheaves are in several aspects simpler to study than

general coherent sheaves, for example, a re�exive rank 2 sheaf F on Pn with

c1(F ) ∈ {−1, 0} is stable if and only if H0(F ) = 0 [28, Chapter 2, Lemma

1.2.5].

In [21, Section 2.2] M. Jardim, D. Markushevich and A. S. Tikhomirov

consider the morphisms

aOP3(−3)⊕ bOP3(−2)⊕ cOP3(−1)
α→ (a+ b+ c+ 2)OP3

whose singular set

∆(α) = {x ∈ P3 | α(x) is not injective}
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is 0-dimensional. In this situation coker(α) is a stable re�exive sheaf of rank 2.

If 3a + 2b + c = 2k is even and positive; then, denoting the normalized sheaf

coker(α)(−k) by E, we obtain the exact sequence

0→ aOP3(−3−k)⊕bOP3(−2−k)⊕cOP3(−1−k)
α→ (a+b+c+2)OP3(−k)→ E → 0,

(3)

where c1(E) = 0. Jardim, Markushevich and Tikhomirov showed in [21, Theorem

8] that the family of sheaves E appearing in the exact triples of the form (3)

constitute a smooth dense open subset S(a, b, c) of an irreducible component of

the moduli space of stable re�exive rank 2 sheaves on P3. For simplicity, we will

call S(a, b, c) an irreducible component.

Our article [39] presents an analog of the above construction for rank 3

sheaves by considering the morphisms

bOP3(−2)⊕ cOP3(−1)
α→ (b+ c+ 3)OP3 , (4)

whose singular set ∆(α) = {x ∈ P3 | α(x) is not injective} is either empty or

0-dimensional. Here coker(α) is a re�exive sheaf of rank 3.

Consider the action ηP3 of the group Gm on P3 = P(V ), given in coordinates

as

ηP3 : Gm × P3 → P3, (t, (x0 : x1 : x2 : x3)) 7→ (x0 : tx1 : tx2 : tx3).

Observe that the �xed points of this action are a0 := (1 : 0 : 0 : 0) and the

points of the plane H := {x0 = 0}.
The action ηP3 of Gm on P3 induces the action of Gm on the set of coherent

sheaves on P3, given on the closed points as E 7→ t∗E, where for t ∈ Gm(k) we

denote by the same letter the action of t on P3.

The stability of the sheaf coker α from (4) is not obvious. There is a relatively

simple criterion for µ-stability of re�exive rank 3 sheaves:

µ-stability Criterion ([28, Remark 1.2.6]). A re�exive rank 3 sheaf E on

Pn with c1(E) = 0, respectively c1(E) = −1,−2, is µ-stable if and only if

H0(Pn, E) = H0(Pn, E∨) = 0, respectively H0(Pn, E) = H0(Pn, E∨(−1)) = 0.

Suppose that b, c ≥ 0, k ≥ 1, c1 ∈ {0,−1,−2}, and 2b + c = 3k + c1. Take

a rank 3 sheaf E on P3 with the �rst Chern class c1 �tting into the exact triple

0→ bOP3(−k − 2)⊕ cOP3(−k − 1)
α→ (b+ c+ 3)OP3(−k)→ E → 0; (5)
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furthermore, the singular set ∆(α) is either empty or 0-dimensional; as for rank 2

sheaves in [21, Section 2.2], this condition holds for general α.

We proved the following auxiliary result:

Theorem 2 ([39, Theorem 1]). For all b and c but (b, c) = (0, 1), there exists

a Gm-invariant Gieseker stable rank 3 re�exive sheaf E �tting into an exact

triple of the form (5) whose restriction to H is stable and locally free.

For all cases except to (b, c) = (0, 3) and (b, c) = (3, 0) the proof goes by

giving an explicit map α : bOP3(−k − 2)⊕ cOP3(−k − 1)
α→ (b+ c+ 3)OP3(−k)

and proving that E = cokerα is µ-stable with the help of µ-stability criterion

given above. In the remaining two cases we adapt the arguments from [38] to

show that for a general α as above the sheaf E = cokerα is Gieseker stable.

One can show that the map Hom(bOP3(−2 − k) ⊕ cOP3(−1 − k), (b + c +

3)OP2(−k))→ Ext1(E,E), induced by an exact triple (5), is surjective. Also we

have Ext2(E,E) = 0. This implies the following statement:

Proposition 3 ([39, Assertion 2]). The moduli space of Gieseker stable sheaves E

in (5) is a smooth dense open subset S3(b, c) of an irreducible component of the

moduli space of Gieseker stable re�exive rank 3 sheaves on P3.

The dimension of the component S3(b, c) containing a point [E] is equal to

12c2(E)−8 if c1(E) = 0; respectively, 12c2(E)−12 if c1(E) = −1; or 12c2(E)−24

if c1(E) = −2.

As above, b, c ≥ 0, k ≥ 1, c1 ∈ {0,−1,−2}, and 2b + c = 3k + c1. Suppose

that E is a locally free sheaf on the projective plane P2 �tting into the an exact

triple of the form

0→ bOP2(−2− k)⊕ cOP2(−1− k)
α′→ (b+ c+ 3)OP2(−k)→ E → 0. (6)

Our proof of Theorem 2 also shows that a general such sheaf is Gieseker

stable. An argument similar to that in the case of sheaves on P3 shows that

the moduli space of stable sheaves E is a dense open subset of an irreducible

component of the moduli space of stable rank 3 vector bundles on P2 with the

�rst Chern class c1; denote this subset by Y.
Denote by MP2(k, n) the moduli variety of stable rank k vector bundles V

on P2 with Chern classes c1(V ) = 0 and c2(V ) = n. We use the following result

[22, Corollary 0.3.a]:
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Proposition 4. If (k, n) = 1, 2, 3, 4 then MP2(k, n) is rational.

In our case k = 3 and (k, n) ∈ {1, 3}, so that the varietyMP2(3, n) is rational

for every n. Thus, Y is rational for c1(E) = 0, i.e., for 3 | (2b+ c).

Theorem 3 ([39, Theorem 2]). The variety S3(b, c) is rational for 3 | (2b+ c).

Let us repeat here the main steps of the proof. For simplicity of notation put

S := S3(b, c). Denote by S0 ⊂ S the subvariety of isomorphism classes of those

sheaves from S, which do not have singularities on H = {x0 = 0}. By S0inv ⊂ S0

we denote the subvariety of isomorphism classes of Gm-invariant sheaves from
S0.

Lemma 2 ([39, Lemma 7]). The variety S0inv is rational for 3 | (2b+ c).

This lemma is proved by construction of mutually inverse morphisms between

dense open subsets of varieties S0inv and Y. The exact de�nition of these morphisms

uses the construction of moduli spaces of stable sheaves via Quot schemes.

The proof of rationality of S3(b, c) for 3 | (2b+c) is �nished by considering the
projective closure S ⊂ S, the equivariant resolution of singularities Π : Ssm → S
with an action ηSsm

of Gm and by invoking Lemma 1, since for the points x

from an open dense subset of Ssm the corresponding points η0Ssm
(x) belong to a

variety, isomorphic to a dense open subset of the variety S0inv, which is rational.

Moreover, by the same method in [39, �5] we prove the rationality of the

components S(0, b, c) of the moduli space of rank 2 sheaves on P3.

5 Stability of objects in derived categories

From now on we assume that the base �eld is the �eld of complex numbers.

In 1980, R. Hartshorne, investigating in [18] the spectra of stable re�exive

coherent sheaves of rank two on P3, proved the boundedness of the third Chern

class c3 of these sheaves for �xed �rst and second Chern classes c1 and c2. The

exact estimates he obtained for the class c3 have the form (see [18, Thm. 8.2])

c3 ≤ c22 − c2 + 2, if c1 = 0; c3 ≤ c22 if c1 = −1. (7)

In the same work, the irreducibility, smoothness and rationality of the moduli

spaces of such sheaves with c1 = −1, arbitrary c2 > 0 and maximal c3 = c22 are

proved.
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In 2018, B. Schmidt in [31], investigating the properties of tilt stability in the

bounded derived category of coherent sheaves Db(P3), proved that the estimates

of (7) are true for all semistable sheaves of rank two on P3, and gave an explicit

description of their moduli space for −1 ≤ c1 ≤ 0, c2 > 0 and maximal c3. As

a consequence, he obtained that these spaces are irreducible smooth rational

projective varieties, except for one case, which was studied before in [38]. It

is not di�cult to see that the moduli spaces of re�exive sheaves described by

Hartshorne are open subsets of these varieties. We also note that quite recently

in the 2023 work [33], Schmidt generalized the above results to the case of

sheaves on P3 of all ranks from 0 to 4.

In a joint work with A. S. Tikhomirov [40] we studied the moduli spaces

of semistable rank two sheaves on rational three-dimensional Fano varieties of

the main series. There are four such varieties � these are the projective space

X1 = P3, the three-dimensional quadric X2, the complete intersection X4 of

two quadrics in the space P5, and the section X5 of the Grassmannian Gr(2, 5)

embedded by Pl�ucker in the space P9 by a linear subspace P6. Here the subscript

i of the variety Xi is its projective degree.

Let us recall the concept of tilt stability, following the presentation in [31].

Let X be one of the varieties Xi, i = 1, 2, 4, 5. Cohomology ring H∗(X,Z)

is generated by the classes of a hyperplane section H ∈ H2(X,Z), a line L ∈
H4(X,Z) (understood as a projective line in the space P2+i ⊃ Xi = X for

i = 1, 2, respectively, Xi ↪→ P1+i for i = 4, 5) and a point {pt} ∈ H6(X,Z) (for

simplicity we will also denote the class of a point by 1).

Let β ∈ R. De�ne twisted Chern character as chβ = e−βH ·ch. Let us present
explicit formulas for the components chβi = chβi (E):

chβ0 = rk(E), chβ1 = ch1 − βHch0, chβ2 = ch2 − βHch1 +
β2

2
H2ch0,

chβ3 = ch3 − βHch2 +
β2

2
H2ch1 −

β3

6
H3ch0.

(8)

De�ne a torsion pair

Tβ = {E ∈ Coh(X) : any quotient E → G satis�es µ(G) > β},

Fβ = {E ∈ Coh(X) : any subsheaf 0 6= F → E satis�es µ(F ) ≤ β}

and a category Cohβ(X) as the extension closure 〈Fβ [1], Tβ〉 in Db(X). For
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α ∈ R+ the tilt-slope of an object E ∈ Cohβ(X) is de�ned as

να,β(E) = να,β(ch0(E), ch1(E), ch2(E)) =
H · chβ2 (E)− α2

2 H
3 · chβ0 (E)

H2 · chβ1 (E)
.

An object E ∈ Cohβ(X) is called to be tilt-(semi)stable (or

να,β-(semi)stable), if for any subobject 0 6= F ↪→ E we have να,β(F ) < (≤
) να,β(E/F ).

The connection between tilt stability and Gieseker stability is provided by

the following statement.

Proposition 5 ([40, Proposition 2.1 (i)]). An object E ∈ Cohβ(X) is να,β-

(semi)stable for β < µ(E) and α� 0 i� E is a 2-(semi)stable sheaf.

Let us also recall the construction of Bridgeland stability conditions on X.

Let

T ′α,β = {E ∈ Cohβ(X) | any quotientE � G satis�es να,β(G) > 0},

F ′α,β = {E ∈ Cohβ(X) | any subobject 0 6= F ↪→ E satis�es

να,β(F ) ≤ 0},

and set Aα,β(X) = 〈F ′α,β [1], T ′α,β〉. For any s > 0 we de�ne

λα,β,s =
chβ3 − sα2H2 · chβ1
H · chβ2 − α2

2 H
3 · chβ0

.

An object E ∈ Aα,β(X) is called λα,β,s-(semi)stable if for any nontrivial subobject

F ↪→ E we have λα,β,s(F ) < (≤)λα,β,s(E).

Note that Db(X2) has a full strong exceptional collection (OX2(−1),S(−1),

OX2
,OX2

(1)), where S is a spinor bundle on X2. The following results of

Schmidt can be used for description of sheaves on X2 with a given Chern

character.

Proposition 6 ([30],[32, Thm. 6.1(2)]). (i) Let α < 1
3 , β ∈ [− 1

2 , 0], s = 1
6 . For

any γ ∈ R we de�ne a torsion pair

T ′′γ = {E ∈ Aα,β(X2) | any quotientE � G satis�es λα,β,s(G) > γ},

F ′′γ = {E ∈ Aα,β(X2) | any subobject 0 6= F ↪→ E satis�es

λα,β,s(F ) ≤ γ}.
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There is a γ ∈ R such that

〈T ′′γ ,F ′′γ [1]〉 = C := 〈OX2
(−1)[3],S(−1)[2],OX2

[1],OX2
(1)〉.

(ii) Let v be the Chern character of an object from Db(X), and α0 > 0, β0 ∈ R,
and s > 0 such that να0,β0

(v) = 0, H2 · vβ0

1 > 0, and ∆(v) ≥ 0. Let us assume

that all να0,β0
-semistable objects of class v are να0,β0

-stable. Then there is a

neighborhood U of the point (α0, β0) such that for all (α, β) ∈ U with να,β(v) >

0, an object E ∈ Cohβ(X) with ch(E) = v is να,β-semistable if and only if it is

λα,β,s-semistable.

6 Moduli of rank 2 sheaves on Fano threefolds

The �rst direction of research in our paper [40] concerns the question of the

boundedness of the third Chern class c3 of semistable rank 2 sheaves on X (as

in the previous section, X is a rational Fano threefold of the main series) with

�xed c1 ∈ {−1, 0} and c2 ≥ 0 and getting estimates for the third Chern class

c3. Using the tilt stability technique in the derived category Db(X), we gave an

almost complete answer to this question for the three-dimensional quadric X2

in the following theorem (see paragraphs (3.1)-(4.2) in [40, Theorem 3.1]).

Theorem 4. (i) Let E be a semistable sheaf on the quadric X2 of rank 2 with

c1 = −1. Then c2 ≥ 0 and c3 ≤ 1
2c

2
2 if c2 is even, and, respectively, c3 ≤ 1

2 (c22−1)

if c2 is odd.

(ii) Let E be a semistable sheaf of rank 2 on X2 with c1(E) = 0. Then c2 ≥ 0

and c3 ≤ 1
2c

2
2, if c2 is even, and, respectively, c3 ≤ 1

2 (c22 + 1), if c2 is odd.

These estimates are exact for all c3 ≥ 0.

The proof of this theorem is based on the study of the relationship between

tilt-semistability and Bridgland semistability in Db(X2). The key here is Schmidt's

important technical result (2014) on the description of a subcategory in Db(X2)

generated by a torsion pair, which we recalled in Proposition 6 (i).

Unfortunately, no analogues of this result are known to date for varieties X4

and X5. Therefore, for these varieties it is not possible to use the same method

to obtain exact upper bounds for the class c3 for all semistable sheaves of rank

2 on X4 and X5. However, using more traditional technique considering the

behavior of stable sheaves at standard birational transformations X4 99K X1
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and X5 99K X2, we give a partial answer to the question about boundedness of

c3 for a su�ciently wide class of sheaves on X4 and X5.

For X = X4 or X5 we denote by B(X) the base of the family of lines on X.

As is known, B(X4) is a smooth Abelian surface, and B(X5) ' P2. Let us give

the following de�nition.

De�nition 11. Re�exive sheaf E of rank 2 with �rst Chern class c1(E) = 0

on X = X4 or X = X5 is called a sheaf of main type if for any line l ∈ B(X)

not passing through points from Sing E we have either E|l ∼= O⊕2P1 , and such

lines constitute a dense open set in B(X), or E|l ∼= OP1(m)⊕OP1(−m), where

m > 0, and the set B2(X) := {l ∈ B(X) | E|l ∼= OP1(m) ⊕ OP1(−m), m ≥ 2}
has dimension ≤ 0.

In [40, Theorem 4.4] we give examples of in�nite series of components of

moduli spaces of semistable sheaves in which the general sheaf is a re�exive

sheaf of main type. (Presumably the property of being a sheaf of main type is

true for all stable re�exive sheaves of rank 2 with c1 = 0, that is, perhaps an

analogue of the Grauert-M�ulich theorem holds for them, which is known to be

valid for stable re�exive sheaves of rank 2 on X1.) For sheaves of main type we

prove the following theorem (see [40, Theorem 6.4, Theorem 6.1]).

Theorem 5. Let E be a stable re�exive sheaf of rank 2 of main type with

Chern classes c1 = 0, c2 > 0, c3 on the variety X4 or X5. Then the following

inequalities are true for the class c3 of the sheaf E.

(i) On X4: c3 ≤ c22 − c2 + 2.

(ii) On X5: c3 ≤ 2
9c

2
2 if c2 is even, and, respectively, c3 ≤ 2

9c
2
2 + 1

2 , if c2 is odd.

Whether these estimates are sharp is an open question.

The second direction of research in the article [40] is the construction of new

in�nite series (with growing class c2) of moduli components of semistable sheaves

of rank two on the varieties X1, X2, X4 and X5, including an explicit description

of the general sheaves in these components. For X = X1 several known series

of moduli components were discussed before in this thesis. As for the varieties

X2, X4 and X5, before our work on each of them only one in�nite series of

moduli components of semistable sheaves of rank 2 was found. These are the

series of components containing as open sets the families of instanton bundles.

Instantonic bundles on X2 were de�ned by L. Costa and R. M. Miro-Roig in

[13] in 2009, and on X4 and X5 and other Fano varieties by A. Kuznetsov [24]
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in 2012 and D. Faenzi [15] in 2013. In work [15] D. Faenzi proved that families

of instanton bundles on X2, X4 and X5 are indeed open subsets of irreducible

components of moduli spaces, which are reduced at a general point and have the

expected dimension. In recent years, an extensive number of works were devoted

to the study of instanton series of bundles, a review of which can be found, for

example, in [3] and [12].

In our article [40] we constructed several new in�nite series of irreducible

rational components of moduli spaces of rank 2 semistable sheaves on the

varieties X1, X2, X4 and X5. We described general sheaves in these components

and proved their re�exivity, and also found dimensions of the constructed components.

These results were proven in [40, Theorem 4.1, Theorem 4.1S, Theorem 4.2,

Theorem 4.2S, Theorem 4.3]. They are collected in Theorem 6 given below.

Let us recall here that general sheaves in these components are described as

extensions, in which the left term is either a twisted trivial rank two bundle,

or a twisted spinor bundle on X2, or a a twisted rank two sheaf F , which we

describe below.

(I) In the case X = X1 the sheaf F is a re�exive sheaf determined from the

exact triple

0→ OP3(−1)→ O⊕3P3 → F → 0. (9)

(II) In the case when X = X4 is a complete intersection of a general pencil

of hyperquadrics in P5, let P1 ⊂ |OP5(2)| be the base of this pencil of quadrics,
and let Γ be a hyperelliptic curve of genus 2, de�ned as the double covering

ρ : Γ → P1, branched at points corresponding to degenerate quadrics of the

pencil. Let Γ∗ = ρ−1(P1∗), where P1∗ ⊂ P1 is an open subset of nondegenerate

quadrics of the pencil, and let ∆ = ρ−1(P1rP1∗). Any point y ∈ Γ∗ corresponds

to one of two series of generating planes on a non-degenerate 4-dimensional

quadric Q(y) := ρ(y), and this series corresponds to a spinor bundle S(y) of

rank 2 on Q(y) with detS(y) = OQ(y)(1). In this case we set Fy = S(y)|X . Let
now y ∈ ∆, that is, the degenerate quadric Q(y) is a cone with its vertex at

the point say z(y), so the projection µ : Q(y) r {z(y)} → Qy is de�ned, where

Qy is a smooth three-dimensional quadric. On Qy the spinor bundle SQy with

detSQy
= OQy

(1) is de�ned, and we set Fy = µ∗SQy
|X . The sheaf F in this

case can be any one from the sheaves Fy for y ∈ Γ.

(III) In the case X = X5, the sheaf F is de�ned as the restriction to X of

the tautological bundle on the Grassmannian Gr(2, 5), twisted by OX(1).
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Theorem 6. Let X be one of the varieties X1, X2, X4, X5, and let OX(1) be

an ample sheaf on X such that Pic(X) = Z[OX(1)]. Consider a sheaf E of rank

2 on X de�ned by one of nontrivial extensions of the form

0→ Fi → E → Gj → 0, 1 ≤ i ≤ 3, 1 ≤ j ≤ 2, (10)

where F1 = OX(−n)⊕2, F2 = F (−n), where F is a rank 2 sheaf of one of

the types (I)-(III) described above, G1 = OS(m), where S ∈ |OX(k)|, and the

sheaves F3 and G2 are de�ned in the case of the quadric X = X2, namely,

F3 = S(−n), where S is a spinor bundle on X2 with detS = OX(1), and

G2 = JP1,S(m), where S ∈ |OX(1)|, P1 is a line on the surface S. Let MX(v) be

the Gieseker-Maruyama moduli scheme of semistable sheaves on X with Chern

character v = ch(E), determined from the triple (10), and let

M := {[E] ∈MX(v) | E is a Gieseker stable extension (10)}. (11)

Then the following statements are true.

(1) For X1, X2, X4, X5 in the case of i = j = 1, k ≥ 1, n = dk2 e, m < −n,
(2) for X1, X4, X5 in the case of i = 2, j = 1, k ≥ 1, n = bk2 c, m < −n,
(3) for X2 in each case

(3.1) i = 1, j = 2, n = 1, m ≤ −1,

(3.2) i = 3, j = 1, k ≥ 1, n = bk2 c+ 1, m ≤ −n,
(3.3) i = 3, j = 2, n = 1, m ≤ −1,

the set M is a smooth dense open subset of an irreducible component M of

the moduli scheme MX(v). Moreover, M is a �ne moduli space, and re�exive

sheaves form a dense open set in M . Moreover, all components M of in�nite

series (1), (2) and (3.1)-(3.3) are rational varieties for each of the varieties

Xl, l = 1, 2, 4, 5, except for the series (2) for X = X4, in which each component

is irrational. Moreover, in all cases the dimensions of the components M are

found as polynomials from Q[k,m, n] or Q[m] respectively.

A signi�cant part of our article [40] is devoted to the research on semistable

sheaves of rank 2 with maximal class c3 on the quadric X2. We show that for

c1 ∈ {−1, 0} and all values of the class c2, except for a few small values, every

such sheaf is given by an extension of the form (10), that is, in the notation

(11) we have equality M = M . In this case the construction from the proof

of Theorem 6 allows for a signi�cant re�nement, giving complete description of

all moduli spaces of semistable sheaves with maximal class c3 on X2. In the

21



remaining cases of small values of c2 and maximal c3 ≥ 0 it is also possible to

obtain an explicit description of moduli spaces, except for two cases, in which

we only proved that these spaces are not smooth. In the case (c1, c2) = (0, 1) we

proved that the maximal value of c3 of a semistable sheaf should be negative,

but could not determine it precisely. These results, proven in [40, Theorems

5.1 � 5.4] are collected in the following two theorems.

Theorem 7. Let X = X2 be a quadric, and MX(v) be the moduli scheme of

Gieseker-Maruyama semistable sheaves E of rank 2 on X with Chern classes

(c1, c2, c3), where c1 ∈ {−1, 0}, c2 ≥ 0, c3 = c3max ≥ 0 is maximal for each c2,

and

v = ch(E) = (2, c1H,
1

2
(c21 − c2)H2,

1

2
(c3max +

2

3
c31 − c1c2)[pt]),

where H = c1(OX(1)). Then the following statements hold.

(1.i) For c1 = −1, even c2 = 2p, p ≥ 2, and c3max = 1
2c

2
2 the variety MX(v) is a

Grassmannization of 2-dimensional quotient spaces of the vector bundle of rank
1
4 (c2 + 2)2 on the space P4 de�ned by the �rst formula (38) in [40] for n = 1

and m = −p. In this case dimMX(v) = 1
2 (c2 + 2)2.

(1.ii) For c1 = −1, odd c2 = 2p + 1, p ≥ 1, and c3max = 1
2 (c22 − 1) the variety

MX(v) is the Grassmannization of 2-dimensional quotient spaces of the vector

bundle of rank 1
4 (c2 + 1)(c2 + 3) on the Grassmannian G = Gr(2, 4) de�ned

by the second formula (38) in [40] for m = −p. In this case dimMX(v) =
1
2 (c2 + 1)(c2 + 3).

(1.iii) For c1 = 0, odd c2 = 2p + 1, p ≥ 1, and c3max = 1
2 (c22 + 1) the variety

MX(v) is a projectivization of the vector bundle of rank 1
2 (c2 + 1)(c2 + 3) on the

space P4, de�ned by the formula (61) in [40] with n = 1 and m = −p. In this

case dimMX(v) = 1
2c

2
2 + 2c2 + 9

2 .

(1.iv) For c1 = 0, even c2 = 2p, p ≥ 3, and c3max = 1
2c

2
2 the variety MX(v) is a

projectivization of the vector bundle of rank 1
2c

2
2 + 2c2 + 1 on the Grassmannian

G, de�ned by the formula (77) in [40] for m = 1− p. In this case dimMX(v) =
1
2c

2
2 + 2c2 + 4.

(2) In all the above cases, the scheme MX(v) is irreducible and is a smooth

rational projective variety, all sheaves from MX(v) are stable, the general sheaf

in MX(v) is re�exive, and MX(v) is a �ne moduli space.

Theorem 8. Under the conditions and notation of Theorem 7, the following

statements are true:
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(1) For c1 = −1, c2 = 1 and c3max = 0, the variety MX(v) is a point [S(−1)].

(2) For c1 = c2 = c3max = 0, the variety MX(v) is a point [O⊕2X ].

(3) For c1 = −1, c2 = 2 and c3max = 2 we have MX(v) ' Gr(2, 5).

(4) For c1 = 0, c2 = 2 and c3max = 2 the scheme MX(v) is irreducible, has

dimension 9 and is not smooth.

(5) For c1 = 0, c2 = 4 and c3max = 8 the scheme MX(v) = MX(2; 0, 4, 8) is

the union of two irreducible components M1 and M2. These components are

described as follows.

(5.i)M1 is a smooth rational variety of dimension 20, which is the projectivization

of a locally free sheaf of rank 17 on Grassmannian G. M1 is a �ne moduli

space and all sheaves in MX(v)1 are stable. Moreover, the scheme MX(v) is

nonsingular along M1.

(5.ii) the scheme M2 is irreducible, has dimension 21, and polystable sheaves in

M2 form a closed subset of dimension 12 in M2, in which the scheme MX(v) is

not smooth.

We highlight the last statement (iii) of [40, Theorem 5.4] as a separate

theorem due to its importance.

Theorem 9. For the quadric X = X2, the schemeMX(2; 0, 4, 8) is disconnected:

MX(2; 0, 4, 8) = M1 tM2,

and its irreducible components M1 and M2 are described above in the statements

(5.i)-(5.ii) of Theorem 8.

This result gives the �rst example of a disconnected moduli scheme of semistable

sheaves of rank two on a smooth projective 3-dimensional variety. In all the

few known so far cases where the issue of connectedness of the module scheme

MX(2; c1, c2, c3) with �xed c1, c2, c3 was discussed, the union of all known components

of the module scheme turned out to be connected. In particular, in the work [21,

Thm. 25, Thm. 27] connectedness of the scheme MP3(2; 0, 2, 0) was proved, as

well as connectedness of the union of seven known by 2017 irreducible components

of the schemeMP3(2; 0, 3, 0), and in the same place [21, Prop. 24] for an arbitrary

positive value n connectedness of the union of some growing with n number of

known components of MP3(2; 0, n, 0) was proved. In the work [1, Main Thm. 3]

connectedness of the scheme MP3(2;−1, 2,m) for all admissible positive values

of m, namely, for m = 0, 2, 4, was proved. To our opinion, one of the possible
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reasons for the disconnectedness of the schemeMX2(2, 0, 4, 8) in Theorem 9 can

be the fact that the quadric X2, unlike P3, is not a toric variety.
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